Hypothesis testing for proportion.

Question: What is a hypothesis testing? How to perform it?

Want to test whether a hypothesis for **population parameter** is correct.

Background

Consider only proportion case in this note.

i.e. For population, $X \sim Ber(p), \mu = p, sd = \sigma = \sqrt{p(1-p)}$. p is proportion.

Then draw a sample of sample size n. Point estimation for mean is the sample mean, \bar{X} , with sd as $\sigma_{\bar{X}} = \sigma/\sqrt{n}$.

Five steps to solve

1. Assumptions

Is sample size large enough? Have at least 15 successes and 15 failures.

2. Null/Alternative hypothesis

 $H_0: p= heta_0$ v.s.

 $H_a: p
eq heta_0$ (Two-sided) or $\overline{H_a: p\leq heta_0}$ (One-sided) or $H_a: p\geq heta_0$ (One-sided)

3. Test statistic

$$T=rac{ar{X}- heta_0}{\sigma_{ar{X}}}$$

(Reasoning behind: Assume H_0 is true, then T will follow a standard normal distribution. So if hull hypothesis is true, T is less likely a large number. Therefore, when T is large enough, we are going to reject H_0 , otherwise retain it. And we use pvalue to evaluate whether T is large enough)

- 4. p-value
 - Two-sided

p-value = 2 * P(T > |t|) = 2(1 - pnorm(|t|)), where t is the test statistic calculated from our sample.

One-sided

p-value = P(T > |t|) = 1 - pnorm(|t|)

5. Conclusion & interpretation

If p < lpha, we reject H_0 , otherwise retain it. $lpha = 1 - ext{confidence level}$